Symposium Fontys Engineering and Natural Sciences

Electrical, Mechatronic and Mechanical Engineering and Engineering Physics

February 1, 2017

Key note speaker

Rick Wielens – LED Skin, Open Innovation Academy

Rick will share some of his first-hand experiences in user led innovation and open innovation; the new normal for the way innovation is done in companies today. With 10 years in the open innovation industry and 400+ innovation projects there were many good and bad examples.

Most of the corporates and organizations today are aware that innovation is about access and collaboration, not ownership. There is a clear business case for recycling the abundance of technologies and outcomes of user and market experiments from adjacent industries. In the hyped start-up scene, everybody is looking to emulate asset light companies like Uber and Airbnb, who are leveraging the underutilized assets of others. But even though open innovation is the new normal, few organizations have implemented an open innovation curriculum to cater for this new innovation contact sport. What are the mindsets that you, as you are about to enter the working life need, to be a successful innovator? From his own experience, Rick will also share a user led innovation start-up: Ledskin. The company was inspired by his surprise and frustration when he witnessed the way one of his children received jaundice treatment. There were many interesting experiences during the journey from the first 'aha moment' to the implementation of a medical device solution in real life.

Programme

Location:

Fontys University of Applied Sciences

Rachelsmolen 1 Building R5 5612 MA Eindhoven

Time table:

Time		R5 Auditorium		
12.30		R	egistration	
13.00	Op	pening word: Gerber	n Tigchelaar, Fontys H	logescholen
13.05	Key note	speaker: Rick Wieler	ns, LED Skin, Open In	novation Academy
13.45		Short b	reak and split-up	
	R5_0.22	R5_Aula	R5_0.23	R5_1.35A
14.00	IPD3	IPD1	Wtb4	Mech4
14.25	IPD4	IPD2	Wtb1	Mech6 (private)
14.50	IPD5	IPD8	Mech7	Mech2
15.15		Break		
15.30	IPD6	IPD10	Mech3	Wtb3
15.55	IPD7	IPD11	Mech8	Wtb2
16.20	IPD9	Mech1	Mech9	IPD12
16.50		Closing and KIVI award nominations		
17.00		Drink		

IPD 1 – Lab in the box

Client:	-	-
Contact at client:	-	
Fontys coach:	Jeedella Jeedella	
Team:		
Timofei Volkov	Fontys Engineering	Electrical Engineering
Nikolaj Zukov	Fontys Engineering	Electrical Engineering
Zakhar Kadanovich	Fontys Engineering	Electrical Engineering
Sparsh Bhonwal	Fontys Engineering	Electrical Engineering
Konstantinos Theologidis	Fontys Engineering	Electrical Engineering

Project description

The main goal of this project is to create educational materials for ES and EMBC courses. You will be responsible for the development of porting/redesigning the ES and EMBC assignments and the EMBC mini-project to a SoC board having a softcore. During the porting process there will be interesting design and interfacing challenges that will allow the students understand and appreciate the challenges of designing advanced embedded systems.

IPD 2 – Self balancing two-wheeler

Client:	-	-
Contact at client:	-	
Fontys coach:	Jeedella Jeedella	
Team:		
David Heurtaux	Fontys Engineering	Electrical Engineering
lon luncu	Fontys Engineering	Electrical Engineering
Jordan Davies	Fontys Engineering	Electrical Engineering
Jonathan van Eijs	Fontys Engineering	Electrical Engineering
Stefan Teley	Fontys Engineering	Electrical Engineering
Pieter Donkers	Fontys Engineering	Electrical Engineering
Natasha Latham	Fontys Engineering	Electrical Engineering
Thomas Versmissen	Fontys Engineering	Electrical Engineering

Project description

Fontys Engineering would like to design and build self-balancing two wheeler robot which can be used for promotional tasks.

IPD 003 Active Loudspeaker

Client:	André Dommels		
Contact at client:	a.dommels@fontys.nl	Fortes	
Fontys coach:	André Dommels	Fontys	
Team:			
George Teofilov	Fontys Engineering	Electrical Engineering	
Tenyo Petrov	Fontys Engineering	Electrical Engineering	
Lukas Martisiunas	Fontys Engineering	Electrical Engineering	
Gabriel Natanael	Fontys Engineering	Electrical Engineering	
Jeroen Huisman	Fontys Engineering	Electrical Engineering	
Wesley van Osch	Fontys Engineering	Electrical Engineering	

Project description

The goal of this project is the construction of a home audio entertainment active loudspeaker, which combines physical and electrical aspects together.

From the physical point of view, the selection of the acoustic drivers is of high importance. Because it directly relates to the sound quality of the system and its final price. Also, once these acoustic drivers are selected, the surrounding acoustic enclosure and electronics can be designed for them.

From the electrical point of view, the electronics are optimized for the acoustic drivers and for the necessity of the system, in other words, they are not "over-specified". Therefore, the cost of the electronics is maintained low, without sacrificing end quality.

What makes our product different from the ones on the market already?

Having no experience in the audio field, the contribution that we, as a team, provide to this project is an outside of the box thinking. Thus, looking for new ideas and solutions for old problems.

As a main factor to the previous statement, is the creativity brought by the whole team in the development of a quality product at a reasonable price.

Our goal as designers is to achieve the "you get more than what you have paid for". Therefore, as said previously, reasonable price without sacrificing quality.

What do you mean with: "you get more than what you have paid for"?

As said previously, an outside of the box thinking, has allowed us to design a versatile system that is decomposed into fully independent systems which can operate separately, together or with other products on the market.

The system is decomposed in two separate systems, the active loudspeaker, and the audio interface. Thus, if a client what's to only purchase one of them or both, he has all the freedom to do it. Our product allows interconnection with a wide range of the similar products on the market.

And as Robert Fripp said: "Music is the wine that fills the cup of silence" and we, as engineers, provide to clients that quality wine so they can enjoy the music.

IPD 003 Team. Left to right: Gabriel, Jeroen, George, Wesley, Lukas, Tenyo

IPD 4 – One box streaming audio system 1

Client:	-	-
Contact at client:	-	
Fontys coach:	Guido Tent	
Team:		
Bjorn van der Meulen	Fontys Engineering	Electrical Engineering
Rudy Coppens	Fontys Engineering	Electrical Engineering
Edwin Peters	Fontys Engineering	Electrical Engineering
Mariano Otero	Fontys Engineering	Electrical Engineering
Tomas Salachov	Fontys Engineering	Electrical Engineering
Omid Salehpour	Fontys Engineering	Electrical Engineering

Project description

The design of an "one box streaming audio system" to drive a loudspeaker.

Subprojects. Design (simulating, measuring and verification) of a:

- 1) Connection with the internet, i.e. Raspberry pi
- 2) Controlling the One Box remote
- 3) DAC
- 4) An PA with volume control
- 5) IR remote or App

1) and 2) are $\frac{1}{2}$ hardware and $\frac{1}{2}$ software

3) and 4) is mainly hardware, small part digital and analogue.

5) pure software

IPD 5 – One box streaming audio system 2

Client:	-	-
Contact at client:	-	
Fontys coach:	Guido Tent	
Team:		
Ton Leenders	Fontys Engineering	Electrical Engineering
Aitzol Pico	Fontys Engineering	Electrical Engineering
Linus Moosbrugger	Fontys Engineering	Electrical Engineering
Rocco Nardonne	Fontys Engineering	Electrical Engineering

Project description

The design of an "one box streaming audio system" to drive a loudspeaker.

- Subprojects. Design (simulating, measuring and verification) of a:
 - 1) Connection with the internet, i.e. Raspberry pi
 - 2) Controlling the One Box remote
 - 3) DAC
 - 4) An PA with volume control
 - 5) IR remote or App

1) and 2) are $\frac{1}{2}$ hardware and $\frac{1}{2}$ software

3) and 4) is mainly hardware, small part digital and analogue.

5) pure software

IPD6: A Sensor for Shear Forces in Shoes

Client:	Raak-MKB Project "ShoeTIMeS"	
Contact at client:	Geert Langereis	
Fontys coach:	Geert Langereis	SiA Fontys
Team:		-
Al Muhannad Al Rawahi	Fontys Engineering	Electrical Engineering
Marthijn Feddes	Fontys Engineering	Electrical Engineering
Emmanuel Yeboah	Fontys Engineering	Electrical Engineering
Kevin Janga	Fontys Engineering	Electrical Engineering
Jorg van de Vries	Fontys Engineering	Electrical Engineering
Roel Van den Broek	Fontys Engineering	Electrical Engineering
Natasha Latham	Fontys Engineering	Electrical Engineering
Dylan van der Zee	Fontys School of Natural Sciences	Engineering Physics

Project description

This project is a pre-study for a Dutch funded SiA Raak-MKB project proposal called "Shear force Textile Intelligent Measurement System Shoe-TIMeS". The overall aim of the project is to make a shoe inlay that enables the measurement of in-plane forces. This is important for diagnostic purposes in orthopedic problems like a diabetic foot.

The aim for this specific IPD group was to develop technology to measure in-plane forces, so called "shear forces". The group has compared three methods of detecting shear:

- Using a LED light source, and measuring with two light dependent resistors (LDRs) for each axis
- A capacitive measurement to detect displacement
- A resistive measurement using strain gauges to detect displacement

The outcome is an elaborated choice for the best technology that can be integrated in a shoe and that is sensitive enough.

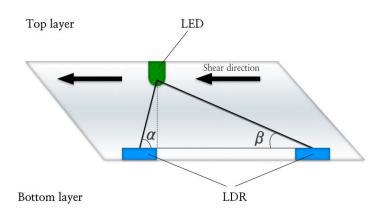


Figure 1: An optical method to detect in-plane (shear) forces with LED and two light sesnors

IPD7: Monitoring of people with a disability

Client:	Stichting Severinus Veldhoven, Mentech Innovation BV	
Contact at client:	Erwin Meinders	
Fontys coach:	Geert Langereis	
		SEVERINUS
Team:		BIJZONDER IN SAMENLEVEN
Reon Smits	Fontys Engineering	Electrical Engineering
Ragy Guirguis	Fontys Engineering	Electrical Engineering
Imelda Chrisanty	Fontys Engineering	Electrical Engineering
Florian Springer	FH Vorarlberg (A)	Mechatronics
Ben Lont	Fontys School of Natural Sciences	Engineering Physics

Project description

Severinus is an institution where people with mental disabilities get help to live a normal life. A common problem these people have is expressing how they feel and if they are feeling discomfort. This is also why it can be difficult for someone else to assess someone's state of mind. There is a need for an objective and accurate measurement system to determine someone's mental state. This can be done by measuring the heart rate and skin conductance. This data is then combined with acceleration data to determine whether someone is mentally stressed.

The purpose of the Fontys part of this project is to realize a wearable constellation of sensors with which the right set of data can be collected to estimate the arousal level of a patient. The current IPD group has realized a system which makes heart rate, galvanic skin response, and on-body accelerometry real time accessible in a single C#-application. This is the first step needed to find the appropriate set of data for the client.

Figure 2: Seeed SEN01400P Grove-GSR Skin Sensor Module Board

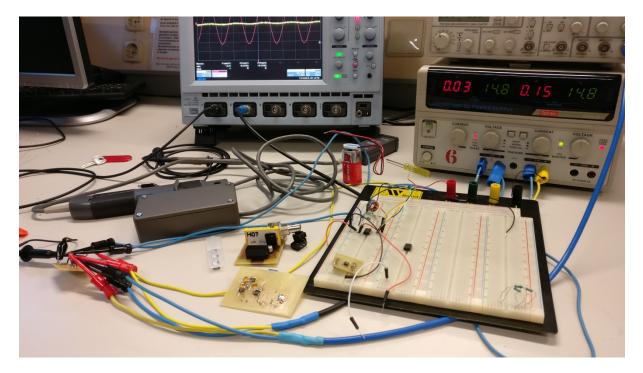
Figure 3: Heart rate monitor PCB based on photoplethysmography

IPD 8 – Greenhouse All

Client:	-	-
Contact at client:	-	
Fontys coach:	Tekin Yilmaz	
Team:		
Steven van Klinken	Fontys Engineering	Electrical Engineering
Rick Jonkers	Fontys Engineering	Electrical Engineering
Pim Rijkers	Fontys Engineering	Electrical Engineering
Fedor Zorin	Fontys Engineering	Electrical Engineering
Luc Fiers	Fontys Engineering	Electrical Engineering
Bart Tijmensen	Fontys Engineering	Electrical Engineering

Project description

Your own greenhouse for seniors is relevant in the world of self-control and WMO's longer live at home for seniors. The technology in this context we call the Ambient Assisted Living or Active and Assisted Living (AAL in short).


There are left and right fully automated "greenhouse" initiatives in which a lot of Cyber Physical Devices / IoT components are not present. The 'robot' monitors and regulates all the necessary parameters within the greenhouse: including temperature, humidity, water, minerals, CO2 etc. The team have to deliver a working greenhouse and demonstrate this on a Smarthouse event.

Client:	Marc Hendriks		
Contact at client:	-	*	
Fontys coach:	Marc Hendriks	Fontys Hogeschool Engineering	
		Fontys	
Team:			
Rajitha Balani	Fontys Engineering	Electrical Engineering	
Pim van Collenburg	Fontys Engineering	Electrical Engineering	
Beñat Murua	Fontys Engineering	Electrical Engineering	
Ugartemendia			
Tom Verbeek	Fontys Engineering	Electrical Engineering	

IPD 9 - Low cost current probe

Project description

Our project goal is to make a low cost, high precision current probe. The probe is meant to be used in analog practicums in the first 2 years of the study electrical engineering. The probe should cost, as much as 50 euro, the price of a comparable current probe from a well know brand is over 2500 euros. This brings the need for a student made current probe at the practical's. The probe needs to be able to measure currents up to 20A, with a frequency of 20MHz. The maximum noise output is 1% of the output signal. All of this needs to fit a small stand alone case.e0

Project IPD 10: Ham radio

Client:	Fontys University	
Contact at client:	-	
Fontys coach:	Duncan van Meeteren	
		Fontys
Team:		TOncys
Marc Tilman	Fontys Engineering	Electrical Engineering
IndraSchoonbrood	Fontys Engineering	Electrical Engineering
BartTijmensen	Fontys Engineering	Electrical Engineering
JavierDiez Hidalgo	Fontys Engineering	Electrical Engineering
Šarūnas Kazlauskas	Fontys Engineering	Electrical Engineering

Project description:

Project assignments are design and build a system that receives air band communication from Eindhoven Airport and streams it on a website. It should also receive ADS-B (Automatic Dependent Surveillance – Broadcast) data from nearby airplanes and plot their location and other information on a map. This requires setting up an SDR (Software Defined radio), some streaming / decoding software and a webserver. The antennas will be handmade, a couple of different antenna designs can be compared in simulation and in real-life tests.

ADS-B: Is a new generation of monitoring technology, mainly rely on airborne electronic equipment and facilities on the ground to accurately monitor the plane position, height, speed and another data. Before the ADS-B technology, radar is most is the most advanced monitoring method, while accuracy of ADS-B is almost 8 times of radar. After the technology put into use, the ground rely on the ,,eyes" to monitor the aircraft flight. Compared with the traditional, ADS-B has the advantage of low cost, close tolerance and strong ability of surveillance such as small, monitoring ability.

SDR: SDR has increasingly became an invaluable research, development, and educational tool within the telecommunications sector with respect to rapidly prototyping new algorithms and paradigms in actual radio hard-ware and evaluating them in the real-world over-the-air conditions. Due to advances in microprocessor technology, radio frequency hardware, and software, SDR has matured into a reliable tool that now is part of almost every communication engineer's toolbox.

Which choices did we made and why? Most of the project objects we made by ourselves, like: air band antenna, ADS-B antenna, splitter, LNA, filters. Making air band antenna we had to choose which type of antenna we will use, we had to calculate dimensions of antenna. We choose ground-plane antenna. First to fall we made prototype to check measurements, after that we had to make original, prepare original antenna to put it on the roof, make it stabile, make it available to connect it to the antenna holder.

ADS-B system: Using ADS-B technology we are able to receive signals from airplanes that are in line of sight of the antenna. With the received signal we are able to plot planes directions, speed, and flights numbers in real time!

IPD 11 – Bee tracking system

Client:	Wageningen University	
Contact at client:	-	
Fontys coach:	Duncan van Meeteren	
Team:		
Bruno Fernandez	Fontys Engineering	Electrical Engineering
Orom Isaac	Fontys Engineering	Electrical Engineering
Pierpaolo Vendittelli	Fontys Engineering	Electrical Engineering
Raffi Ohanis	Fontys Engineering	Electrical Engineering
Ricardo Portugal	Fontys Engineering	Electrical Engineering
Sotirios Kargas	Fontys Engineering	Electrical Engineering
Zhengrong Zhang	Fontys Engineering	Electrical Engineering

Problem Description

"If the bee disappeared off the surface of the globe then man would only have four years of life left. No more bees, no more pollination, no more plants, no more animals, no more man." Albert Einstein

During the past years, an alarming mortality problem in bee colonies has been reported around the world. According to data from the Wageningen University, the mortality in the Netherlands is among the highest in the world (average of 22% every year). This matter is of great importance to the ecosystems because a substantial proportion of the flora relies on the bees for its pollination, which can affect a considerable part of the food offer for the animal kingdom, including humans. The main goal of this project is to design a prototype, which will allow the researchers to investigate the causes by tracking the bee activity with central point the hive.

Assignment Description

In this project, students will deepen their knowledge in: RF localization, LabVIEW & software development, antenna simulation & measuring, RFID, SoC & Raspberry Pi, embedded & operating systems, solar power, GSM network.

The customizability of the final product by the end user is a common practice in our days, as the computational power has significantly increased giving precise solutions to individual needs. For this reason, the programmable interface of the application used is LabVIEW, a graphical development environment. LabVIEW will allow the field researchers to expand the functionality of the system according to the demands of their research without the needs of knowing programming syntax but using the graphical tools of LabVIEW. This will eventually get the researcher one step closer to the truth of the bees behavior while adapting to the ad hoc needs.

Working one day per week, the 4rth year Electrical Engineering students are trying to design a selfsufficient system, which is able to detect the RF tags, and monitor the flow of bees in the hive. The prototype will also be able to record the data to make it analyzable, making understandable the behavior of the bees during their life span.

IPD12: Tunnel of Light

Client:	Glow '16	
Contact at client:	Tom Weerts	
Fontys coach:	Enitia Karijodinomo	
Team:		GLOW
Peer Hems	Fontys Engineering	Elektrotechniek
Sven Verheesen	Fontys Engineering	Elektrotechniek
Floris-Jan van den Hoek	Fontys Engineering	Elektrotechniek

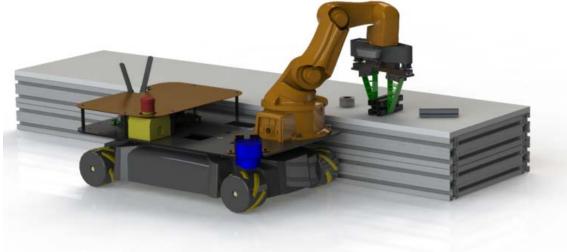
Project description

From February '16 till November we worked on an interactive light installation for Glow 2016. We have built a unit of 6x3 meters with almost 3000 balls, 7000 LED's and !**740.000**! visitors.

Mech 1 - Factory of the future: Multi-robot transportation and collaboration

Client:	Mechatronics development department	
Contact at client:	Sjriek Alers	
Fontys coach:	Nelis van Lierop	Contuc
Team:		Fontys
Bob Clephas	Fontys Engineering	Mechatronics
Ruud van Dommelen	Fontys Engineering	Mechatronics
Niels van der Heijden	Fontys Engineering	Mechatronics
Tom van de Laar	Fontys Engineering	Mechatronics
Luuk Voesten	Fontys Engineering	Mechatronics
Marcel van Wensveen	Fontys Engineering	Mechatronics
Coen Timmermans	Fontys Engineering	Mechatronics

Project description


To support the human worker by autonomously acquiring the needed parts. There is one order picking robot: a mobile platform (the KUKA youBot) with a manipulator for order picking/placing. The process will be as follows. A part will be requested by the human operator, the robot system then fulfills these tasks:

- In the picking area, the order picker should detect the required part from a white static platform.

- Manipulation of the required part (picking it up) by the order picking robot.

- The picking robot should autonomously navigate to the loading area.

- In the loading area, the picking robot places the object onto one of the delivery places, this is also a white static platform.

Mech 2: Collaborative Robot Safety System

Client:	Mechatronics development department	
Contact at client:	Sjriek Alers	
Fontys coach:	Nelis van Lierop	
		Fontys
Team:		/ 5
Guido Claessen	Fontys Engineering	Mechatronics
Rens van Hulst	Fontys Engineering	Mechatronics
Bas Janssen	Fontys Engineering	Mechatronics
Luuk Jeurgens	Fontys Engineering	Mechatronics
Michiel de Kort	Fontys Engineering	Mechatronics
Luc Ahrens	Fontys Engineering	Mechatronics

Project description:

For the 'RAAK Geen Moer Aan' project, people are working in the same area as a robotic arm to tighten screws and bolts. It is not safe for people to work next to a robotic arm which is carrying out a task that interferes with the people's workspace. So a robotic arm which tightens screws and bolts in an area in which people are not physically limited to touch the robot, needs to be made safe.

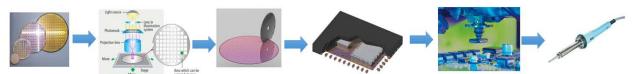
Mech 3 - Modular and multifunctional robot gripper

Client:	Lectoraat Mechatronica fontys	
Contact at client:	Randy Kerstjens	
Fontys coach:	Antoon Pepping	
		ig 🎽
Team:		10
Toby van den Bogaart	Fontys engineering	Mechatronica
Sam de Jonge	Fontys engineering	Mechatronica
Ruud Linskens	Fontys engineering	Mechatronica
Robert Delmaar	Fontys engineering	Mechatronica
Marcel Verspaandonk	Fontys engineering	Mechatronica
Jeroen Meijs	Fontys engineering	Mechatronica

Project description

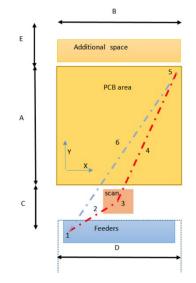
The high-tech industry is producing more smaller batches of high complexity. Reconfigurability of robotic arms is a new theme in the area of robotics. This is currently a barrier why most work is still being done manually.

Flexibility in these production lines is of utmost importance because of ever-changing products. To accomplish this amount of flexibility while maintaining the basic functions of a traditional end-effector, the project has to incorporate feedback into their design. This to prevent crushing delicate products, while still maintaining modularity.


In cooperation with the industry, this project strives to build a prototype which shows that a fast reconfigurability is indeed possible in the so called High Mix, Low Volume and High Complexity environment. These products are usually placed in bins, which brings forth the aspect of binpicking to the list of challenges. One of the other challenges of this project is to physically grab products by using one of three pre-configured end-effectors, which are located on one of two robots, the UR-5 and the ABB IRB-120.

Mech 4 - FEMM-line Pick and Place

Client:	David Reuijl	*
Contact at client:	Paul Goede	
Fontys coach:	Peter Jacobs	Fontys
		Fontys
Team:		University of Applied Sciences
Dries ven den Les	Fuencia e artice e	March storagin Engling sping
Dries van der Lee	Engineering	Mechatronic Engineering
Maikel Michiels	Engineering	Mechatronic Engineering
Stijn Maas	Engineering	Mechatronic Engineering
Joris van Rodijnen	Engineering	Mechatronic Engineering
Martijn Princen	Engineering	Mechatronic Engineering
Max van den Eertwegh	Engineering	Mechatronic Engineering


Project description

In 2016, Fontys started a several years lasting FEMM-line (Fontys Electronic Mechanical Manufacturing) project. In this project, Fontys Mechatronics is aiming on making a set of machines to produce electro-mechanical semi-conductor based components (Chips and MEMS) from scratch. The complete FEMM-line is divided into 6 main steps:

Silicium wafer > Lithography process > cut the wafer > package the chips > place chips on PCB > solder chips on PCB

This project (one of the subprojects in FEMM-Line) is Fontys' Pick-and-Place Project, in which a machine will be made to pick electrical components from feeding-tapes and place them on PCB's. More specific, the deliverable of this project will be a working X-axis designed with a high accuracy of 10 µm and a speed of 3600 components per hour. This brings several Mechatronic challenges to meet all the requirements.

An impression of the movements and amount of time of the Pick and Placing process. The minimum acceleration and velocity are determined being 57 $\frac{m}{s^2}$ and 2,1 $\frac{m}{s}$.

1	Pick component from feeder	0,2 sec
2	Move to scanner	0,11 sec
3	Scan	0,1 sec
4	Move to position PCB	0,18 sec
5	Place on PCB	0,2 sec
6	Move to next component on feeder	0,21 sec

Mech 6 - The Screw cap Applicator

Client:	CMS BV	
Contact at client:	Toine Cuyten	
Fontys coach:	Peter Jacobs	<u> </u>
Team:		
Peter Bazelmans	Fontys Engineering	Mechatronics
Niels Duijkers	Fontys Engineering	Mechatronics
Bennie Godschalk	Fontys Engineering	Mechatronics
Luc Hems	Fontys Engineering	Mechatronics
Paul Kolen	Fontys Engineering	Mechatronics
Stef Pijnenburg	Fontys Engineering	Mechatronics

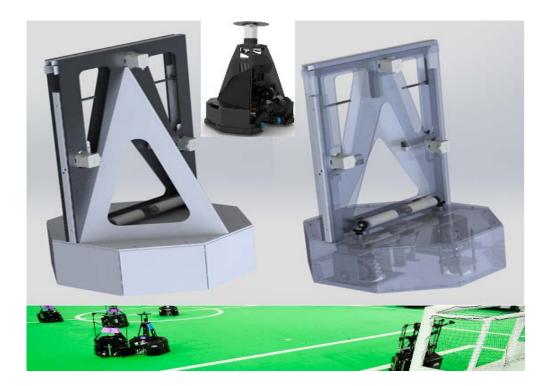
This presentation is not public

Project description

Cuyten Maintenance Services B.V. (CMS), located in Maarheeze (NL), is a Dutch company specialized in the maintenance of industrial machinery in particular in the food industry. With over 19 years of experience CMS covers a wide range of technical services, from revision operations and support of technical services up to industrial innovations. CMS has started a cooperation with the Fontys Center of Expertise in High Tech Systems and Materials.

A particular filling machine is capable of filling cartons with liquid substances (e.g. milk, yoghurts or other dairy products). The filling process can be divided in multiple stages: unfolding of the cartons, sealing of the bottom side, sealing of the screw caps, disinfection to prevent contamination, filling and closing of the carton.

Sealing of the screw caps is done by a screw cap applicator, which was redesigned in this project. The previous version of the screw cap applicator failed in consistency and reliability, which were taking together with other requirements into consideration in the redesign. The aim of this project is to come up with a new innovative concept for the screw cap applicator. One that is fast, reliable, needs little maintenance and preferably easy to install.

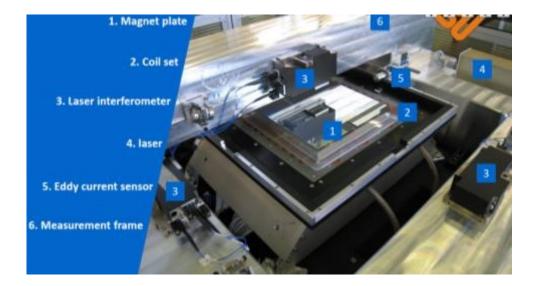


Mech 7 - Komt dat schot

Client:	fontys	
Contact at client:	Teade punter	
Fontys coach:	Michiel van Osch	
		Fontys
Team:		ioneys
Rick Hummelink	Fontys Engineering	Mechatronics
Daan Widlak	Fontys Engineering	Mechatronics
Cas Candel	Fontys Engineering	Mechatronics
Wout Kanters	Fontys Engineering	Mechatronics
Job van Hoof	Fontys Engineering	Mechatronics
Nick Matthijsse	Fontys Engineering	Mechatronics

Project description

The task for this project is to design a goal keeper for the middle-sized League of the Robocup. Robocup is a robot soccer competition held world wide and fontys ICT wants to cooperate with MKB companies to participate in this competition. This project focused on the mechanical aspects of turning a regular Turtlebot 5k robot into the goal keeper. This was done by focusing on 3 aspects of the keeper robot, drivetrain, ball detection and blocking the ball. The solution to these 3 are swerve drive for the drivetrain, a front camera and top camera to follow the ball at all times, and a spring powered brace to block the soccer ball. These solutions have been simulated or had a test setup build.


Mech8: NAPAS

Client:	Tu/e	
Contact at client:	Coen Custers	Technische Universiteit
Fontys coach:	Antoon Pepping	Eindhoven
		University of Technology
Team:		
Jeroen van den Akker	Fontys Engineering	Mechatronics
Koen Vermeer	Fontys Engineering	Mechatronics
Sil Vaes	Fontys Engineering	Mechatronics
Nino van den Broek	Fontys Engineering	Mechatronics
Bart van Oorschot	Fontys Engineering	Mechatronics

Project description

"The assignment is to fully describe the system, including all subsystems with their interdependencies" of the NAPAS system. The NAPAS system is a high precision positioning stage that are used in the semiconductor lithographic industry. The magnetically levitated planar actuator consists of a moving magnet plate levitating above a stationary coil set. This actuator offers longstroke capability as well as nanometer accuracy. The advantage is that the magnet plate is fully contactless. The preferred language to describe this system is SysML. This description will then function as a base to improve faulty software and hardware, however the expectation is that hardware will not be changed. This leads to an improved NAPAS system which is well documented.

The goal of this project is to create a complete documentation for the NAPAS setup in sysML. The documentation should be easily accessible. The second step will be a FMEA model of the NAPAS state flow.

Mech 9 – Fontys ASML ReMa

Client:	ASML / Fontys	
Contact at client:	Roel Merry / Nelis van Lierop	
Fontys coach:	Antoon Pepping	
Team:		
Arend-Jan van Noorden	Fontys Engineering	Mechatronica
Tim van Harten	Fontys Engineering	Mechatronica
Rick Oligschläger	Fontys Engineering	Mechatronica
Stan Verbeek	Fontys Engineering	Mechatronica
Jarco Beek	Fontys Engineering	Mechatronica
Luuk Spin	Fontys Engineering	Mechatronica

Project description

The goal is to embed a practical use case with ASML hardware in the course to let students experience the practical aspects of system identification. For this purpose ASML has provided a Reticle Masking (REMA) unit of one of their wafer scanners. However, the REMA unit is not directly suitable as test device for system identification purposes. In order to be able to use the REMA as a test device it has to function as a stand-alone device. Since the purpose of the REMA has changed from an ASML waferstepper subsystem to a Fontys/ASML system identification test device, the previous Fontys IPD project group has established a new project specification document.

Wtb1 – Pounch Dispenser

Client:	-	-
Contact at client:	-	
Fontys coach:	Reza Hosseini	
Team:		
Jip Beijers	Fontys Engineering	Mechanical Engineering
John Lee	Fontys Engineering	Mechanical Engineering
Bram Persoon	Fontys Engineering	Mechanical Engineering
M van der Venne	Fontys Engineering	Mechanical Engineering
Cas Verbruggen	Fontys Engineering	Mechanical Engineering
M Verhaeg	Fontys Engineering	Mechanical Engineering

Project description

No description available

Wtb2 – Cable break system

Client:	-	-
Contact at client:	-	
Fontys coach:	Henk Hulshof	
Team:		
Joost Frijns	Fontys Engineering	Mechanical Engineering
Matthijs Hermans	Fontys Engineering	Mechanical Engineering
Ralf Hermans	Fontys Engineering	Mechanical Engineering
Niek van der Loo	Fontys Engineering	Mechanical Engineering
Nick Wijnen	Fontys Engineering	Mechanical Engineering
Robin Zijlmans	Fontys Engineering	Mechanical Engineering

Project description

No description available

Wtb3 - Tarzan Rope Swing

Client:	DreamX Design	
Contact at client:	Micky Verhaeg	
Fontys coach:	Henk Hulshof	DreamX Design
		8
Team:		
Bashir Abba Gana	Fontys Engineering	Mechanical engineering
Wouter Mutsers	Fontys Engineering	Mechanical engineering
Jeroen Reijkers	Fontys Engineering	Mechanical engineering
Luuk schuring	Fontys Engineering	Mechanical engineering
Jarno Vermeulen	Fontys Engineering	Mechanical engineering

Project description

Have you ever wanted to swing around hanging from ropes like Tarzan and George of the Jungle? If your answer is "yes" than, well, you're not the only one.

The assignment we got for this project was to design a Tarzan Rope Swing-type of playground equipment, which is to be put at the edge of a pool. The idea is to grab the rope and swing merrily into the water. How far can you jump?

For those of you more interested in the technical side of the story, part of the assignment was to create a construction report suited for approval by the TÜV, the Technischer ÜberwachungsVerein. A lot of research went into how to make this possible, regarding national laws and international norms. This research, together with the more detailed parts of the design process, will be explained by us during our presentation and of course in our report.

We hope this story has made peaked your interest and we would love to answer any and all questions you might have.

Wtb4 - Medical 3D Printing

Client:	Dr. Janssen, Orthopedisch centrum	orthopedie groot eindhoven
Contact at client:	Marieke van der Steen	
Fontys coach:	Sonja voorn, Hein van de Vrande	
Team:		
Ted Bender	Fontys Engineering	Mechanical Engineering
Jordy Cuijpers	Fontys Engineering	Mechanical Engineering
Malou van den Eijnde	Fontys Engineering	Mechanical Engineering
Brian de Cock	Fontys School of Natural Sciences	Engineering Physics
Jochem Brand	Fontys School of Natural Sciences	Engineering Physics

Project description

When you have hurt your knee, orthopedists perform certain tests to determine whether your knee is damaged or not and what the level of damage to your knee is. At the moment doctors do this based on experience and the difference between the two knees.

In this project the goal was to create a model with which doctors in training can obtain the necessary experience to perform the knee-tests.

The tests can have 4 different outcomes. The teacher has to be able to choose which of the 4 outcomes will happen at any time on this model. This should be done for at least one test.

At this time, the 22th of December, the expectation is that the mechanical part of this model will be finished within this project for two out of five knee-tests. So one more than the project goal.

